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Received 2023 October 16; accepted 2023 December 18

Abstract Coronal magnetic fields evolve quasi statically over long time scales and dynam-

ically over short time scales. As of now there exists no regular measurements of coronal

magnetic fields, and therefore generating the coronal magnetic field evolution using the obser-

vations of the magnetic field at the photosphere is of fundamental requirement to understand

the origin of the transient phenomena from the solar active regions. Using the magnetofric-

tion (MF) approach, we aim to simulate the coronal field evolution in the solar active region

11429. The MF method is implemented in open source PENCIL CODE along with a driver

module to drive the initial field with different boundary conditions prescribed from observed

vector magnetic fields at the photosphere. In order to work with vector potential and the ob-

servations, we prescribe three types of bottom boundary drivers with varying free-magnetic

energy. The MF simulation reproduces the magnetic structure, which better matches to the

sigmoidal morphology exhibited by AIA images at the pre-eruptive time. We found that the

already sheared field further driven by the sheared magnetic field, will maintain and further

build the highly sheared coronal magnetic configuration, as seen in AR 11429. Data-driven

MF simulation is a viable tool to generate the coronal magnetic field evolution, capturing the

formation of the twisted flux rope and its eruption.

Key words: sun: magnetic fields — sun: coronal mass ejections — sun: simulations — sun:

evolution

1 INTRODUCTION

Solar eruptive events like flares and CMEs are energetic, large-scale phenomena of scientific interest due

to their significant impact on space weather. From several studies based on observations and numerical

ar
X

iv
:2

31
2.

12
12

4v
1 

 [
as

tr
o-

ph
.S

R
] 

 1
9 

D
ec

 2
02

3



2 Vemareddy et al.

modeling (Klimchuk 2001; Priest & Forbes 2002), it has been established that these large-scale events are

magnetically driven by the storage of magnetic energy and helicity in the coronal volume of the active

regions (ARs). From this point of view, understanding the structure and evolution of the coronal magnetic

field have become an important element in revealing the physical origins of these events on the Sun.

As of now, regular measurements of the magnetic fields are available at the photospheric surface

(Scherrer et al. 1995; Schou et al. 2012) at high resolution and cadence. Continuous vector field observa-

tions of magnetic fields from Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory

(Hoeksema et al. 2014) had been used in several studies of the magnetic field dynamics, relating their con-

nection to the coronal features present before the occurrence of the flares/CMEs. Since the magnetic fields

are line-tied, they become twisted and sheared by the corresponding photospheric plasma motions. These

signatures of stored energy magnetic configurations are reported to exist in several ARs exhibiting shearing

and rotating motions of the sunspot polarities (Ambastha et al. 1993; Brown et al. 2003; Tian & Alexander

2006; Vemareddy et al. 2012). The configurations with stored magnetic energy are referred to as magnetic

nonpotentiality, which was used to quantified in terms of parameters such as the magnetic shear (Hagyard

& Rabin 1986; Wang et al. 1994), horizontal gradient of longitudinal magnetic field (Falconer et al. 2003;

Song et al. 2006; Vasantharaju et al. 2018), electric current (Wang et al. 1994; Leka et al. 1996), aver-

age force-free twist parameter αav (Pevtsov et al. 1994; Hagino & Sakurai 2004; Vemareddy et al. 2012),

magnetic free energy (Metcalf et al. 2005), etc. Further, the magnetic non-potentiality was suggested to

be linked with sigmoidal-shaped plasma loops in the EUV or soft X-ray observations of the corona and

are the precursor (Rust & Kumar 1994, 1996; Canfield et al. 2007). Using the continuous vector magnetic

field observations, it was possible only recently to show that the coronal accumulation of magnetic en-

ergy and helicity is predominant in the ARs exhibiting shearing and rotating motions (Liu & Schuck 2012;

Vemareddy 2015, 2019; Dhakal et al. 2020) and those ARs produce violent coronal activity.

Since routine observations of the coronal magnetic fields are not available, the photospheric magnetic

field measurements are typically extrapolated into the corona to reconstruct the 3-dimensional (3D) mag-

netic structure of the AR corona (Sakurai 1989). The coronal field is approximated as force-free owing to

low beta plasma (Wiegelmann & Sakurai 2012) and its evolution is modeled as the series of quasi-static

force-free fields. These extrapolated fields are employed to study the coronal magnetic structure containing

the null points and flux rope topology (Masson et al. 2009; Vemareddy & Wiegelmann 2014; Guo et al.

2016; Vemareddy & Demóulin 2018a) and are judged to be reproduce structures resembling the observed

coronal plasma loops to a high accuracy (Schrijver et al. 2008; Vemareddy & Demóulin 2018b; Vemareddy

2019). However, the extrapolated magnetic fields represent static fields where the dynamic evolution is

missing. Magnetohydrodynamic (MHD) simulations are a viable tool to generate the dynamical evolution

of the magnetic fields in the AR corona. These simulations involve advancing the full MHD equations in

time and require information about plasma flow, density and temperature in addition to the magnetic field

(e.g. Mikić et al. 1999; Gudiksen & Nordlund 2002, 2005a,b; Bingert & Peter 2011) in the computational

domain. These types of models were very successful in reproducing the magnetic field and loop structure

above active regions (Bourdin et al. 2013; Warnecke & Peter 2019a). The type of coronal heating in such
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observationally driven models seems more consistent with MHD turbulence than with the dissipation of

Alfvén waves (Bourdin et al. 2016).

Although it is physically realistic to capture various processes like flare reconnection, it is computa-

tionally expensive to perform on AR scale over a timescale of a few days, even if one enhances the time

step significantly (Warnecke & Bingert 2020). As the magnetic field in a coronal model is almost force-free

between about 6 and 60 Mm in height (Peter et al. 2015; Bourdin et al. 2018), alternative methods that may

be used to model the coronal field are the ambipolar-diffusion and magneto-frictional approaches. While

ambipolar diffusion would include only a magnetic resistivity parallel to the field B, this method focuses on

relaxing an initially known coronal field configuration. We see that this relaxation is sufficient to generate

helicity (Bourdin & Brandenburg 2018). The magneto-frictional approach uses a different resistivity term

in the induction equation that depends on the current density J that could still point in any direction.

The magneto-frictional method (Yang et al. 1986) can be used to simulate a continuous time series of

force-free fields by evolving an initial coronal field by changing the photospheric magnetic field continu-

ously (Mackay et al. 2011). In this approach, only the induction equation is used with the assumption that

the plasma velocity is proportional to the Lorentz force (Mackay et al. 2011) and therefore the initial field

relaxes to a force-free field by advancing the magnetic induction equation. The initial field evolves with

the corresponding change of the observed lower boundary and preserves the magnetic connectivity and flux

from one time instance to the later smoothly. These simulations have been shown to be effective in captur-

ing comparable coronal field resembling morphology in EUV images, which is utilised to study the coronal

field evolution involving filament channel and flux rope formations (Cheung & DeRosa 2012; Gibb et al.

2014; Pomoell et al. 2019; Keppens et al. 2023). Compared to full MHD, the magnetofrictional simulations

are computationally less expensive and typically much faster; hence, they can be used to study the evolution

of coronal fields over long time scales.

In this study, by using the magnetofriction approach, we simulate the coronal field evolution in the

AR 11429. The method is implemented in PENCIL CODE (Pencil Code Collaboration et al. 2021), which is

open source and freely available under GitHub1. We drive the initial field with different boundary conditions

prescribed from observed vector magnetic fields and then analyze the coronal field evolution over a span of

3 days. The simulation method and numerical implementation is described in Sect. 2, the output results of

the simulation are presented in Sect. 3 and a summary and conclusions are given in Sect. 4.

2 NUMERICAL SIMULATION

2.1 Magneto-Friction Method

The coronal magnetic field evolution of the AR 11429 is simulated by magneto-frictional (MF) relaxation

method (Yang et al. 1986). It is a special case of the more general MHD relaxation method, which tries to

solve the momentum and magnetic induction equations to obtain an equilibrium state. In the MF method, the

magnetic field evolves in response to the photospheric foot point motions through the non-ideal induction

equation

1 http://github.com/pencil-code

http://github.com/pencil-code
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Fig. 1: a-b) HMI vector magnetic field observations of the AR 11429 at two different times of the evolution.

The background image is the normal component Bz of the magnetic field with overplotted contours at

±120 G. Arrows refer to horizontal fields, (Bx, By), with their length being proportional to the magnitude

Bh =
√
B2

x +B2
y . The axes units are in pixels of 0.5 arcsec. c) time evolution of the net flux in each

polarities of the AR.

∂A

∂t
= vMF ×B− ηµ0J (1)

where vMF is the magnetic frictional plasma velocity, A is the vector potential relating the magnetic field

as B = ∇ ×A, and J = ∇ ×B/µ0 is the electric current. Solving the induction equation in terms of A

ensures that ∇ ·B = 0 is always fulfilled. We choose a magnetic diffusivity of η = 2× 108 m/s2 to be able

to run the simulation stable. Under the assumption of magneto-static conditions, the momentum balance

equation gives the plasma velocity as given by

vMF =
1

ν

µ0 J×B

B2
(2)
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where ν is the magneto-frictional coefficient controlling the speed of the relaxation process and µ0 is the

magnetic permeability in vacuum. As suggested in Cheung & DeRosa (2012), the frictional coefficient ν

can not be uniform because it will lead to unphysical vMF at the lower boundary, and therefore we used a

height-dependant functional form given by

1

ν
=

1

ν0
(1− e−z/L), (3)

where ν0 is set around 80×10−12 s m−2 and z is the height above the bottom boundary, and L is the chosen

as 15 Mm. This form of frictional coefficient gives MF velocities smoothly reduces to zero towards bottom

boundary z = 0.

2.2 PENCIL CODE Implementation

The PENCIL CODE is a high-order finite-difference code for compressible hydrodynamic flows with mag-

netic fields. It is highly modular and MPI parallelized to run on massively supercomputers. To achieve

high numerical accuracy, the code uses sixth-order in space and third-order in time differentiation schemes.

More details on computational aspects are referred to Brandenburg (2003). In order to ensure solenoidality,

magnetic fields are implemented in terms of vector potential A. We implement the MF relaxation technique

(Eqs. 2 and 1) in the PENCIL CODE . This simulation requires solving only induction equation involving

the magnetic field and MF velocity; therefore, magnetic.f90 is used, switching off all other modules

corresponding to momentum equation (hydro module), continuity equation (density module), equation of

state, entropy equations, etc. The code in this implementation includes calculating the pencils of MF ve-

locity (Eq. 2) using the Lorentz force and then updating the vector potential A with the terms in Eq. 1. A

height-dependant friction coefficient (Eq. 3) is also added in the code.

A special driver module is developed to load the bottom boundary magnetic field observations and

then feed the simulation as the time progresses in steps of integration time. We use a modification of the

implementation by (Bingert & Peter 2011; Bourdin 2020; Warnecke & Bingert 2020). The time step δt is

normally specified as Courant time step through the coefficients cδt(= 0.9), cδt,v(= 0.25) as given by

δt = min

(
cδt

δxmin

Umax
cδt,v

δx2
min

Dmax

)
(4)

where δxmin is the minimum grid size in all three directions, Umax is the maximum resultant velocity and

Dmax is the maximum of the diffusion coefficients used in addition to the magnetic diffusion η. To smooth

the small-scale local gradients, we also include third-order hyper diffusion.

2.3 Initial condition

The initial 3D magnetic field is computed with the potential field (PF, Gary & Hagyard 1990) as well as

non-linear force-free field (NLFFF, Wheatland et al. 2000; Wiegelmann 2004) model assumption from the

observed boundary condition of the AR 11429. The NLFFF is more suitable to a non-potential field of

the AR with twisted structures like flux ropes or sigmoids. Using the observed boundary magnetic field

of the AR at time 03:00 UT on March 7, 2012, we computed the PF and NLFFF on a uniform Cartesian

computational grid of 192×192×120 encompassing the AR corona of physical dimensions 280×280×175

Mm3. Here, to reduce the computation time of AR evolution of 72 hours, we rebin the actual observations
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by a factor of four.

Since the PENCIL CODE runs on the vector potential instead of magnetic field, we construct the vector

potential A of the computed 3D magnetic field B according to the formalism prescribed in DeVore &

Antiochos (2000)

A(x, y, z) = Ap(x, y, 0)− ẑ ×
∫ z

0

dz′B(x, y, z′). (5)

where Ap(x, y, 0) is vector potential of PF at the bottom boundary (z = 0) and is computed from the

normal or vertical component of magnetic field Bz as

Ap(x) =
ẑ

2π
×
∫
S

Bz(x
′)

x− x′

|x− x′|2
dS′ (6)

by imposing the conditions ∇ ·Ap = 0 and n̂ ·Ap = 0. These conditions are referred as coulomb gauge

and DeVore gauge respectively (Valori et al. 2016).

An alternative Fourier method (e.g., Chae 2001) is used to calculate the Ap|z=0 as given by

Ap,x = FT−1

[
iky

k2x + k2y
FT(Bz)

]
Ap,y = FT−1

[
−ikx

k2x + k2y
FT(Bz)

]
(7)

where kx, ky are wave numbers in x and y directions respectively and FT the Fourier transform.

2.4 Boundary conditions

The time-dependent bottom boundary condition (bc) is prepared from the photospheric vector magnetic

field observations of the AR 11429 obtained from the Helioseismic and Magnetic Imager (HMI, Schou

et al. 2012; Bobra et al. 2014) onboard the Solar Dynamics Observatory. These observations have spatial

resolution of 0.5”/pixel and temporal cadence of 720s. These magnetic field observations are smoothed

with a Gaussian width of 3 pixels, both spatially and temporally. Flux balance condition is also imposed

on each magnetogram by multiplying the flux of one polarity by the factor that it is smaller or larger than

the other polarity. These observations are then spatially re-binned by a factor of four, so the resolution of

the simulation roughly becomes 2”/pixel (1.465 Mm). From these observations, we prescribe three types of

boundary conditions, in the form of vector potential, for three different runs.

1. bc1: The simplest bc for the bottom boundary is normal component of magnetic field which is written

as vector potential Ap(x, y) (Eq. 7). With this bc, the changing boundary as the AR evolves, embeds

the foot point motion and then the coronal field evolves correspondingly in the MF relaxation. This bc

was used in the most of the earlier works using the MF approach (Mackay et al. 2011; Yardley et al.

2018) or the full MHD simulations (e.g. Bingert & Peter 2011; Bourdin et al. 2013; Warnecke & Peter

2019a).

2. bc2: In order to include observed twist information from the horizontal components of the magnetic

field, we prepared a bc using

A(x, y, z = 1) = Ap(x, y, z = 0)− ẑ ×
∫ z=1

0

dz′Blff(x, y, z
′) (8)

where Blfff is the linear force-free field described by the average AR magnetic twist αav. We use this

bc at z = 0 instead at z = 1 layer which is at δz = 1.456 Mm in height. This modification does not
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T=0hr 

T=20hr 

T=44hr 

T=67hr 

Run1 Run2 Run3 

Fig. 2: Magnetic structure at different epochs of the simulation Run1 (first column), Run2 (second column)

and Run3 (third column). The background image is the normal magnetic field Bz at the photosphere (z = 0)

in grey shades together with magnetic field lines color-coded by their field strengths. In Run1 and Run2, the

magnetic field evolves to be mildly sheared as it is not much different from the initial condition. However,

the magnetic structure in Run3 is highly sheared and resembles an inverse-S shape as a whole. An animation

of this figure is available online.

alter the bottom Bz more than 0.1% and is necessary to facilitate injecting AR twist into the corona

when working with vector potential instead of magnetic field directly.

3. bc3: The twist information can also be invoked into the bc by using the direct observations of horizon-

tal field

A(x, y, z = 1) = Ap(x, y, z = 0)− ẑ ×
∫ z=1

0

dz′Bobs(x, y, z
′) (9)

where the Bobs|z=1 is obtained with NLFFF extrapolations from Bobs|z=0. Since the NLFFF is also

computationally expensive to perform at every time instant of the observations, one can make an approx-



8 Vemareddy et al.

Fig. 3: Time evolution of top: total magnetic helicity H , bottom: total magnetic energy E for Run1 (cyan),

Run2 (blue) and Run3 (red). The start time of the simulation is 03:00 UT on March 7, 2012.

imation that Bobs|z=1 = cBobs|z=0, where the c is the factor by which the magnetic field falls from

z = 0 to z = 1 layer. In most of the extrapolation models, the magnetic fields are found to decrease

exponentially from the photosphere into the corona, so we set c = 0.7 in our setup of bc at z = 0.

These boundary conditions at z=0 are extrapolated using potential field model into ghost layers below

bottom boundary. Since the derivatives are 6th order accurate, three ghost layers are included to evaluate

the derivatives near the boundaries. In the horizontal direction, we adopt periodic boundary conditions.

3 RESULTS

The AR 11429 was a pre-emerged one and appeared in the north latitudinal belt N17o as seen from the

earth view. Snapshots of vector field observations of the AR 11429 at two different epochs of the evolution

are displayed in Fig. 1. These magnetograms reveal the presence of a large interface of opposite polarities

referred to as the polarity inversion line (PIL). Over time, these polarities evolve with persistent shearing

and converging motions. These motions might have led to continuous flux cancellations inferred from the

time profile of the magnetic flux in the AR (Dhakal et al. 2020). The coronal EUV images of the AR

present a plasma loop structure resembling inverse-S sigmoidal morphology, which was modeled to show

the presence of a twisted flux rope in the core of the AR (Vemareddy 2021). During the disk passage, the AR

produced three major eruptive flares with CMEs of speeds exceeding 1000 km/s. In this study, we consider
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Fig. 4: Time evolution of top: relative magnetic helicity HR, bottom: free magnetic energy Ef for Run1

(cyan), Run2 (blue) and Run3 (red). The start time of the simulation is 03:00 UT on March 7, 2012.

72 hours of AR evolution starting from 03:00 UT on March 7, 2012 by driving the initial condition with

the time-series of observational data via MF method. After two days of evolution, the AR again produced

an eruptive flare of M-class at 03:53 UT on March 9, 2012. This means that the magnetic evolution leads

to storage of magnetic energy by building a twisted flux rope, and we aim to capture a similar evolution

through MF simulations.

We perform three different MF runs with appropriate combinations of initial and boundary conditions.

Run1 is a simulation with the PF as initial condition driven by bc1 boundary condition as described in

Sect. 2.4. Run2 is the PF initial condition driven by bc2 boundary condition. A uniform average twist is

derived from the vector field observations and is injected into the corona. In Run3, we drive the NLFFF as

the initial condition with bc3 boundary condition. In this case, an ad-hoc assumption involved is that the

magnetic fields decreases exponentially up in the corona, so the horizontal fields are reduced by a c = 0.7

factor and then used to prescribe the bottom boundary which is changing in time. The 3D magnetic fields

of these runs are analyzed and the results are described in the following.

The simulated 3D magnetic field of the runs is visualized with VAPOR software (Li et al. 2019). In

Fig. 2, the magnetic structure of the AR is displayed by tracing the field lines at different epochs of the

evolution. The foot point locations of the depicted field lines are chosen with a bias based on a variable

such as horizontal magnetic field (Bh) and total current magnitude Jtot. The initial field structure is shown
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2012-03-09T03:12 UT 

AIA 171 

2012-03-09T03:12 UT 

AIA 94 

48 hr@Run3 48 hr@Run2 

Fig. 5: Comparison of magnetic structure with the coronal plasma tracers in AIA images of the AR 11429.

Top row: Rendering of magnetic structure at 46th hour of Run2 and Run3. bottom row: Images in 94

Å show predominant emission along the sheared PIL, which is a signature of a twisted flux rope, whereas

171 Å images present plasma loops as the lobes of the sigmoid. The magnetic structure in Run3 better

resembles the sigmoid as seen in AIA 171 Å, however the core field is not as much twisted flux to mimic

the hot emission as seen in AIA 94 Å.

in the first row panels. Even if the shearing motions of the opposite polarities, the magnetic structure in

Run1 exhibits less non-potential without much difference from the initial field. We expect that this is due

to no magnetic twist information being pumped from the boundary which even with horizontal motions

deforms the initial potential field state insignificantly. The magnetic structure in Run2 evolves to a little

more sheared state since we assume the boundary field to be linear force free. Being already in a non-

potential state, the magnetic structure in Run3 appears highly sheared and resembles inverse-S shaped as

a whole. It can be noticed that the shearedness increases with time because the twist information from the

horizontal field is added to driver field from boundary observations. An animation of the three runs together

is available online for a better comparison of simulations.

In addition, we have computed magnetic energy and helicity from the volumetric distribution of mag-

netic field above the AR and plotted in Figure 3 and 4 with time. Especially, to compare the coronal helicity

budget, we derive the relative magnetic helicity (Berger & Field 1984) from the 3D simulated field as given
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by

HR = H −Hp =

∫
A ·B dV −

∫
Ap ·Bp dV (10)

Here the reference field is potential field Bp and Ap is the corresponding vector potential, which have same

normal component of boundary field as that of the actual magnetic field under evaluation. The magnetic

helicity H in Run1 increases in magnitude but smaller by two orders (1040 Mx2) to that obtained in Run2

and Run3, where the H value decreases over the course of the AR evolution by about 25% from the initial

value. The H value varies from 39 × 1042 Mx2 in Run3 which is a typical value in orders of magnitude

to produce a large-scale CME eruption. The relative helicity HR differs insignificantly with H since Hp is

negligibly small and therefore it is not required to calculate HR separately when using PENCIL CODE for

such simulations.

We note that the total magnetic flux as well as the average twist (αav) in the AR decreases in time

(Dhakal et al. 2020). The H increases due to shear motions alone which is below 1042 Mx2 in Run1,

however, there is no additional increasing twist information in the horizontal field observations, and as

a result the coronal helicity budget decreases in Run2 and Run3 from their initial values. Under these

conditions, it is difficult to model the formation of twisted flux and its eruption. These type of ARs have

to be treated with a provision to pump as much helicity through boundary observations into the corona

(Cheung & DeRosa 2012).

We have also evaluated the total and free magnetic energies. Given 3D magnetic field in the computa-

tional volume, the free magnetic energy is calculated by

Ef = E − Ep =
1

8π

∫ (
B2 −B2

p

)
dV (11)

where Bp is the potential magnetic field. The total energy E decreases from 31 × 1032 ergs at the start

of the Run3 to 22 × 1032 ergs, which is following the total magnetic flux evolution as in Figure 1c. This

corresponds to decrease of Ef/E from 20% to 15%. For Run2 and Run1, the E follows a similar trend

with lower values compared to Run3. However, Ef/E increases to 10% for Run1 and to 15% for Run2

during the modelled evolution. In all these runs, the free energy is typically comparable to M-class flares,

and shows the characteristic difference among the three runs performed with different boundary and initial

conditions.

Finally, we also compare the magnetic structure qualitatively with the coronal imaging observations

in EUV wavelengths. In the top row of Fig. 5, we have displayed the rendering of magnetic structure at

the time instance of 46th hour from Run2 and Run3. The snapshots at this time correspond to the CME

eruption at 3:53 UT on March 9, for which the pre-eruptive AIA 94 and 171 Å images at 03:12 UT are

displayed in the bottom panels of Fig. 5. The plasma tracers in AIA 171 Å present two lobes; one of their

legs is adjacent to the other on opposite sides of the PIL. This implies a highly sheared magnetic field

resembling an inverse-S sigmoidal configuration (Green et al. 2002; Vemareddy & Demóulin 2018a). This

kind of morphology is almost similar to the magnetic structure generated in Run3 than in Run2. However,

the predominant emission seen in AIA 94 Å along the sheared PIL refers to twisted flux rope at the core of

the sigmoid, which is not reproduced in the simulation. Previous MF simulations by Yardley et al. (2018)

also showed a similar difficulty of generating twisted flux at the core; however, the lobes of the sigmoid and

their evolution were reported to be well captured. Altogether, the MF simulation presented here is able to
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reproduce the dynamical evolution of the AR consisting of a highly sheared magnetic field globally that is

able to launch CMEs.

4 SUMMARY AND CONCLUSIONS

We have performed the data-driven MF simulations of the AR 11429. The numerical procedure of the MF

simulation is implemented, for the first time, in PENCIL CODE , which is publicly available to serve a

variety of astrophysical problems. In this case, we are required to use only a magnetic module, and the

boundary conditions have to be prepared from the observations of the AR under study in the form of vector

potential, which then have to be fed to the bottom boundary layer as the simulation advances in time. The

twisted magnetic field generated from the MF simulations may also serve as the initial conditions for the full

MHD runs including plasma, where one intends to study the thermodynamic evolution of flaring plasma,

etc. Compared to Warnecke & Peter (2019b), where the helicity is injected directly at the boundary, this

approach is much closer to the observed loop structure and hence is more self-consistent with photospheric

input data.

We perform three different MF runs with appropriate combinations of the initial and boundary condi-

tions. In this work, we invented a way to invoke magnetic field observations to drive the coronal field. The

key point is to work with vector potential A than magnetic field B without worrying about divergence con-

dition. However, there is a lot of difficulty in converting B to A and this is the first such effort. The simplest

case is to drive the potential field with the observed normal component of magnetic field, which cannot lead

to build up of a sheared coronal magnetic structure. The latter two combinations of the initial and boundary

conditions are meant to inject magnetic twist information obtained from the vector field observations of

the magnetic field. We found that the already sheared field, further driven by the sheared magnetic field,

will maintain and further build the highly sheared coronal magnetic configuration, as seen in AR 11429.

The sigmoidal morphology exhibited by AIA images at the pre-eruptive time is better reproduced by the

boundary condition with twist information added to the vector potential and then drive the NLFFF since

the AR is pre-existing with a non-potential magnetic field, even after the first eruption on March 7. The

quantitative estimates of magnetic helicity and energy clearly show a marked distinction in these three runs,

with the higher of these values corresponding to the complex and twisted nature of the magnetic field.

Although the global sheared configuration is reproduced, the core field is not of twisted flux mimicking

the hot plasma emission. The twisted flux along the PIL is not generated at the small scales, which is a

drawback to deal with MF simulations in this study, as was also the case in the previous such simulations

(Yardley et al. 2018). As a note, the AR 11429 is a decaying active region, so the input of magnetic twist

from the observations is less significant to reflect in the driver field, which could be a reason for the de-

creasing free energy and magnetic helicity. Under these conditions, capturing the formation of twisted flux

during the AR evolution is a challenge. In such instances, new approaches with certain ad hoc assumptions

are required. Cheung & DeRosa (2012) derived the electric fields based on the time sequence vector mag-

netic field with free parameters that add the twist information proportionately to the observations. Instead

of magnetic fields, the electric fields thus derived were used to drive the MF simulations and then study

the formation of the twisted flux rope at the core and its further eruptions. Such simulations have recently



Magnetofriction method with PENCIL CODE 13

been employed (Cheung et al. 2015; Pomoell et al. 2019) to study the formation of the twisted flux rope

in the course of AR evolution and then its rise motion in few ARs. Therefore, it is worth driving the MF

simulations with electric fields, and our future reports will follow such investigations.
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